Telomerase reverse transcriptase upregulation attenuates astrocyte proliferation and promotes neuronal survival in the hypoxic-ischemic rat brain.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Telomerase reverse transcriptase (TERT) is tightly related to the resistance of cells to stress and injury. However, little is known about the roles of TERT in the nervous system. We try to investigate the effects of TERT on the function of astrocytes in developing rat brains subjected to hypoxia-ischemia. METHODS TERT expression was detected in rat brains with hypoxia-ischemia. In in vitro study, the function of astrocytes with TERT overexpression was measured, and the effects of astrocyte on neuronal apoptosis were examined. Moreover, overexpression or inhibition of TERT was conducted in vivo by gene transduction. Astrocyte proliferation was examined through Ki67 staining. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining and brain infarct volume calculation were used to detect neuronal injury. RESULTS Both TERT mRNA and protein were upregulated in neurons within 2 days but shifted to astrocytes at Day 3 after hypoxia-ischemia. Astrocyte proliferation was inhibited with TERT overexpression due to the upregulation of cell-cycle regulatory protein p15. Meanwhile, the apoptosis of neurons increased, whereas neurons were cocultured with conditioned media from astrocytes with TERT inhibition compared with TERT overexpression due to the decrease of neurotrophin-3 expression in astrocytes. Furthermore, Ki67-positive astrocytes and neuronal injury were found to be inhibited in TERT-overexpressing rat brains with hypoxia-ischemia. CONCLUSIONS TERT attenuates astrocyte proliferation and promotes neuronal survival in the developing rat brain after hypoxia-ischemia, partly through its enhancement of p15 and neurotrophin-3 expression in astrocytes.
منابع مشابه
Telomerase reverse transcriptase: a novel neuroprotective mechanism involved in neonatal hypoxic-ischemic brain injury.
Hypoxic-ischemic (HI) brain injury is one of the most severe diseases in the neonatal central nervous system (CNS). The pathological mechanisms of HI brain injury, including cellular apoptosis, excitotoxicity, oxidative stress, etc., are complicated and not well known. Cellular processes such as angiogenesis, neuronal survival and neurogenesis have been proven to be closely associated with brai...
متن کاملP 82: The Transplantation of Human Umbilical Cord Mesenchymal Stem Cells in Neonatal Strokes
Brain injuries that caused by strokes (result of intra partum ischemia) are a frequent cause of prenatal mortality and morbidity with limited therapeutic options. Transplanting human mesenchymal stem cells (hmscs) indicates improvement in hypoxic Ischemic brain injury (HIBD) by secretion growth factor stimulating repair processes (Hmscs) known as multi potent cells which isolated from bone marr...
متن کاملNeuroprotective signaling mechanisms of telomerase are regulated by brain-derived neurotrophic factor in rat spinal cord motor neurons.
Telomerase can promote neuron survival and can be regulated by growth factors such as brain-derived neurotrophic factor (BDNF). Increases of BDNF expression and telomerase activity after brain injury suggest that telomerase may be involved in BDNF-mediated neuroprotection. We investigated BDNF regulation of telomerase in rat spinal cord motor neurons (SMNs). Our results indicate that BDNF incre...
متن کاملIncreased bcl-2 Protein Levels in Rat Primary Astrocyte Culture Following Chronic Lithium Treatment
Background: B cell CLL/lymphoma 2 protein, bcl-2, is an important anti-apoptotic factor that has been implicated in lithium’s neuroprotective effect. However, most studies have focused on assessing the effects of lithium in neurons, ignoring examination of bcl-2 in astrocytes, which also influence neuronal survival and are affected in bipolar disorder. The aim of this study was to evaluate whet...
متن کاملHippocampal Astrocyte Response to Melatonin Following Neural Damage Induction in Rats
Introduction: Brain injury induces an almost immediate response from glial cells, especially astrocytes. Activation of astrocytes leads to the production of inflammatory cytokines and reactive oxygen species that may result in secondary neuronal damage. Melatonin is an anti-inflammatory and antioxidant agent, and it has been reported to exert neuroprotection through the prevention of neuronal d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 42 12 شماره
صفحات -
تاریخ انتشار 2011